Meta Information | Exercise contained in | Rate this Exercise | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
![]() 0 ![]() |
Eine Feldspule mit 10 Windungen pro \SI{1.00}{cm} Länge, deren Durchmesser gegen die Länge sehr klein ist, liegt mit ihrer Achse rechtwinklig zum magnetischen Meridian. Im Mittelpunkt der Spule ist eine kleine Kompassnadel auf einer Spitze gelagert. Bei welcher Stromstärke wird die Nadel um $\ang{30.0}$ abgelenkt? Das Erdmagnetfeld sei an dieser Stelle \SI{50.0}{\micro\tesla} stark. $\star$
\begin{empheq}[box=\Gegeben]{align} N &= 10\\ \ell &= \SI{1}{cm} = \SI{0.01}{m}\\ \phi &= \ang{30.0}\\ B_{\EarthIndex} &= \SI{50.0}{\micro\tesla} = \SI{5e-5}{T} \end{empheq} \begin{empheq}[box=\Gesucht]{align} \text{Stromstärke, }[I]=\si{A} \end{empheq} Die Spule muss ein Magnetfeld von \begin{align} B_{\text{\tiny S}}&= B_{\EarthIndex} \cdot \tan \phi\\ &= \SI{5.0e-5}{T} \cdot \tan (\ang{30})\\ &= \SI{2.887e-5}{T} \end{align} erzeugen. Dafür ist die folgende Stromstärke erforderlich: \begin{align} I &= \frac{\ell}{\mu_0 N} \cdot B_{\text{\tiny S}} = \frac{\ell}{\mu_0 N} \cdot B_{\EarthIndex} \cdot \tan \phi\\ &= \frac{\SI{0.01}{m}}{4\pi\cdot\SI{e-7}{\volt\second\per\ampere\per\meter} \cdot N} \cdot \SI{2.887e-5}{T}\\ &= \SI{2.297e-2}{A} \end{align} \begin{empheq}[box=\Lsgbox]{align} I &= \frac{\ell B_{\EarthIndex} \tan \phi}{\mu_0 N}\\ &= \SI{2.297e-2}{A} = \SI{23.0}{mA} \end{empheq}
09:11, 25. June 2019 | star | Urs Zellweger (urs) | Current Version |
19:04, 14. Nov. 2018 | rechtwinklig | Urs Zellweger (urs) | Compare with Current |
10:35, 7. Dec. 2017 | beautyfying | Urs Zellweger (urs) | Compare with Current |
10:34, 7. Dec. 2017 | lsg boxed | Urs Zellweger (urs) | Compare with Current |
10:25, 7. Dec. 2017 | signifikanz | Urs Zellweger (urs) | Compare with Current |
22:41, 24. May 2017 | si | Urs Zellweger (urs) | Compare with Current |
22:40, 24. May 2017 | si | Urs Zellweger (urs) | Compare with Current |